Waterside Problems
with
HVAC Systems

ASHRAE - Tennessee Valley Chapter
Chattanooga, TN

January 5, 2022

Dan Weimar
Senior Corporate Engineer
Typical Water Cooled A/C System

Portion of Water Lost Due To Evaporation: Remaining Water is Cooled

Heat (BTU)

Portion of Water Sent to Drain (Bleed) To Control Concentration of Dissolved Impurities

Outside

Condenser

Building

Makeup Added To Replace Water Lost Via Evaporation & Bleed
Challenges w/ Cooling Water Systems
Water

• Water has several properties that make it an excellent heat transfer medium
 – Safe
 – Relatively available and inexpensive
 – High heat capacity (can absorb or release more heat per °F than virtually any other common substance)
The Universal Solvent

- Water is known as a “universal solvent”
- Water has the ability to dissolve to a certain extent almost every substance found in nature
- It’s the impurities in water that cause corrosion, deposits, and related problems
- Rain water is water in its purest form
 - It’s condensed water vapor (no impurities)
 - But rain water doesn’t stay pure for very long
The problem causing impurities in water are picked up as it goes through the “hydrologic cycle”
- Dissolved gases
- Dissolved solids
- Suspended solids

Water quality varies widely depending on geography

Water quality can change
• over time
Effective Water Treatment Helps

- Maximize cooling system
 - Life
 - Efficiency
 - Reliability
 - Safety

- Minimize total operating costs
 - Energy, water, chemical, maintenance, and labor

Water Treatment is an important part of your preventative maintenance program
An Effective Water Treatment Program Must Address All Three!

• Corrosion
 – Destroys system metals
 – Contributes to deposits

• Deposits
 – Reduce heat transfer efficiency
 – Increase energy costs
 – Causes under-deposit corrosion

• Poor Microbiological Control
 – Causes corrosion, deposits and increases potential for disease
Number One Cause of Corrosion

Bacteria
Waterside Corrosion
Monitoring Corrosion

Corrosion Coupons

Corrosion Coupons Racks
Monitoring Corrosion

Testing for iron levels in the cooling tower water is easy, quick and inexpensive
Ways To Control Corrosion

- Corrosion resistant materials of construction
 - Expensive up front, but equipment lasts much longer

- Balancing corrosive/scale forming tendencies by maintaining proper cycles (bleed)

- Good deposit and microbiological control

- Use of corrosion inhibitors
 - Proper inhibitors for conditions
 - Maintain inhibitor levels in desired range
Scale Deposits

• Mineral scale
 – Calcium carbonate
 – Other impurities
 – Watch for low flow!
 – Usually forms on heat exchange surfaces

• Most deposits are mixtures
 – Mud, silt, rust, slime, etc.
 – All can be termed “fouling”
 – Some deposits more insulating than others
Why Scale Is Bad

• Fouled condenser surfaces do not cool the hot refrigerant gas as efficiently as clean surfaces
 – Refrigerant temperature will be higher than design
 – Refrigerant pressure must be increased so that it will condense at the higher temperature
 – Requires compressor to work harder

• The compressor is designed to work at a certain condensing temperature and pressure for a given load
 – Condensing pressure is also called head pressure
 – If the temperature is high, the head pressure will be high
Scale Deposits
Factors That Influence Scale Formation

• High dissolved mineral concentration due to insufficient bleed
• Low flow
• High temperatures
• Low inhibitor level
• Suspended solids
Conductivity

- Measures ability of water to “conduct” an electrical current
- Used to estimate total dissolved solids (TDS) content
- Higher the conductivity, greater the dissolved solids content
- Conductivity increases as the dissolved minerals “concentrate” inside a chiller/cooling tower
Scale Control Methods

• Limit the concentration of the scale forming minerals through good bleed control

• Make changes to the system design to modify flow and/or temperatures

• Keep the system clean

• Apply chemical scale inhibitors
 – Extend the solubility of problem impurities
 – Keep solids from forming adherent deposits
Keys To Effective Microbial Control

System Design and Operation

Biocidal Additions

Biomonitoring

Cleaning and Disinfection
Microbiologically Influence Corrosion (MIC)
Poor Microbiological Control

• Corrosion and metal failure
• Fouled heat exchanger surfaces
 energy costs
• Legionnaires’ disease
• System downtime
• High maintenance costs

Millions of dollars due to reduced life, efficiency, reliability, and safety
Biofilm and Biofouling

• Bacteria produces a gelatinous substance called a biofilm
 – “Slick” feel
 – Highly insulating
 – May not even be visible

• Protects microorganisms from biocide additions

• Biofouling occurs when biofilms trap dirt, sediment, fibers, bugs, corrosion by-products, etc.

• Biofilms or biofouling is normally called “slime”

• It is associated with *Legionella* bacteria
Enhanced Chiller Tubes

• Evaporator and condenser, a shell and tube HX
• Enhanced copper HX tubes typically used
• Also called rifled tubes
• Ridges and valleys
 – Increase turbulence
 – Increase surface area
 – Increase heat transfer
• Increase potential for corrosion & deposits
• Super enhanced – ridges very close together
Controlling MIC
(Microbiological Influenced Corrosion)

• Every drop of water in the system should see a non-oxidizing biocide weekly – managed with your building’s automation System

• An oxidizing biocide (i.e. chlorine) residual when in operation

• That may mean three times per week applications to comply with ASHRAE 188, a Standard that establishes minimum risk management requirement or building with complex water systems. (Legionaries’ Disease)

• ASHRAE Guideline 12 is a Guideline, which can be viewed as voluntary guidance and supplementary material
Cost of Poor Water Treatment

• 500 ton cooling load
• Efficiency loss due to 0.01” biofilm in condenser tubes = $51,219 per year in increased electricity costs! *
• Fouling also increases
 – Potential for corrosion
 – Potential for Legionnaires’ disease
 – Maintenance costs
 – Potential for unexpected shutdown and failure

* Based on an average chiller efficiency of 0.75 kW/ton & electricity cost of $0.06 kW-hr.
Any Questions?

Thank you!

dan.weimar@chemaqua.com